

Tetrahedron Letters 40 (1999) 8897-8900

Direct conversion of benzyl alcohol to ketone by polymer-supported Rh catalyst

Chul-Ho Jun,* Hye-Suk Hong and Chan-Woo Huh Department of Chemistry, Yonsei University, Seoul 120-749, South Korea

Received 30 August 1999; revised 27 September 1999; accepted 1 October 1999

Abstract

Benzyl alcohol reacted with 1-alkene to give the corresponding ketone by in situ generated polystyrene-based rhodium catalyst. The catalytic activity of this polymer-supported rhodium catalyst has not been reduced after reusing it four times. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: catalysis; ketones; rhodium; rhodium compounds; supported reagents/reactions.

Aldehydic C-H bond activation by transition metal catalyst has been utilized for the direct synthesis of ketone: hydroacylation.¹ Chelation-assisted hydroacylation with 2-aminopyridine derivative was devised in order to evade the decarbonylation frequently occurring in hydroacylation.² Recently, this type of hydroacylation has been further developed to the direct conversion of benzyl alcohol and 1-alkene to ketone (Eq. 1).³

These homogeneous catalytic systems, comprising of the precious rhodium, cannot be reused because no simple separation method for them exists. There are, however, several separation methods for a homogeneous catalyst enabling its further use.⁴ One of them involves the polymer-supported catalyst which is the immobilized homogeneous catalytic species.⁵ In this report, in situ generated polymer-supported rhodium catalysts were used as the reusable catalyst in the direct conversion of benzyl alcohol to ketone.

Benzyl alcohol (1a, 0.36 mmol) reacted with 1-hexene (2a, 3.6 mmol) in the presence of RhCl₃·xH₂O (3a, 0.018 mmol), polystyrene-based diphenylphosphine (4, 0.054 mmol), and PPh₃ (0.018 mmol) with cocatalyst 2-amino-4-picoline (5, 0.36 mmol) in toluene at 130°C for 72 h (Table 1, entry 1).

After the reaction, the solution phase was decanted and the solid phase was washed with benzene 5-6 times. The solution was concentrated in vacuo, and it was further purified by column-chromatography

^{*} Corresponding author.

Table 1

Direct conversion of 1 and 2 to 6 by in situ generated polymer-supported rhodium catalyst

	Reactants			Yields of Product 6 ^a			
Entry	1(R ¹)	2(R ²)	product	1st	2nd	3rd	4th
1	H- (1a)	n-C ₄ H ₉ -(2a)	6a	69%	72%	71%	71%
2	F- (1b)		6b	75%	77%	74%	70%
3	CH ₃ - (1c)		6c	67%	66%	63%	60%
4	CF ₃ - (1d)		6d	70%	73%	72% ^b	68% ^c
5	CH ₃ O-(1e)		6 e	61% ^d	68% ^e	59% ^f	58% ^f
6	H- (1a)	t-C ₄ H ₉ - (2b)	6f	50%	52%	52%	48%
7	F- (1b)		6g	53%	55%	53%	48%

^aThe polystyrene-based diphenylphosphine rhodium catalyst generated *in-situ* from 3 and 4 was reused, and 5 and PPh₃ removed on decant and washing operation were readded on each run. ^{b,c}Additional 3% yield of Tischenko type ester was obtained. ^dAdditional 20% yield of 4-methoxybenzylamine was isolated. ^{e,f}2% And 8% yield of 4-methoxybenzylamine was also obtained.

to give heptanophenone in a 69% yield. After the same amounts of 1a, 2a, 5 and PPh₃ were added to the precipitate, in situ generated polymer-supported rhodium catalyst, the reaction was carried out under the previous reaction conditions to give a 72% isolated yield of 6a. The third and fourth uses of the recovered polymer-supported rhodium catalyst both afforded 71% isolated yields of 6a. The activity of the recovered catalyst did not decrease, even after three uses. Benzyl alcohols bearing various substituents were applied in this reaction. The electron-withdrawing substituents such as the fluoro- (1b) and trifluoromethyl- (1d) groups (entries 2 and 4) lead to better yields of ketone 6b and 6d than do the electron-donating substituents like the methyl (1c) and methoxy (1e) groups (entries 3 and 5). In these reactions, the first use of the catalyst afforded a lower yield of ketone 6 than did the second use. The reason must be that PPh₃ is partly used for the synthesis of Rh(I) species from Rh(III) when the first polystyrene-based diphenylphosphine Rh(I) complex is generated. When the reaction was carried out with the sterically hindered olefin, 3,3-dimethylbutene (2b), the corresponding ketone 6f was obtained in a 50% yield (entry 6), which is a lower yield than the reaction with 2a. This can be explained by the fact that the polymer-supported rhodium catalyst is very sensitive to the steric hindrance of substrate olefins due to the difficult binding of the congested polymer-bound rhodium metal center.

This polymer-based Rh(I) catalyst was also generated in situ by the ligand-exchange reaction of Rh(I) complexes with 4. Catalytic activities were examined, as shown in Table 2.

When (PPh₃)₃RhCl was used, the catalytic activity dramatically decreased after the first use: 75% in the first use, 32% in the second, and 19% in the third (Table 2, entry 1). In this reaction, the rhodium catalyst might not be impregnated to 4, and the real catalytic species of the first run must be (Ph₃P)₃RhCl, which is soluble in solvent and is washed away on decanting and washing. This type of leaching was also observed with [(C₂H₄)₂RhCl]₂ catalyst in the isolated yield of 6a (entry 3). When [(C₈H₁₄)₂RhCl]₂ with PPh₃ was used as the catalyst precursor, the catalytic activity did not decrease with repeated use in the yield of 6a: 83% in the first use, 81% in the second, and 81% in the third (entry 5). This result implies

Table 2
Catalytic activity for various catalytic systems generated from 3 and 4

	M (antahust)	and Atabasa	Yields of Product 6a ^a			
Entry	M (catalyst)	additive	1st	2nd	3rd	
1	(Ph ₃ P) ₃ RhCl (3b)	PPh ₃ (5 mol%)	73%	32%	19%	
2	(Ph ₃ P) ₃ RhCl (3b)		61%	30%	21%	
3	[(C ₂ H ₄) ₂ RhCl] ₂ (3c)	PPh ₃ (5 mol%)	90%	50%	54%	
4	[(C ₂ H ₄) ₂ RhCl] ₂ (3c)		76%	66%	44%	
5	[(C ₈ H ₁₄) ₂ RhCl] ₂ (3d)	PPh ₃ (5 mol%)	83%	81%	81%	
6	[(C ₈ H ₁₄) ₂ RhCl] ₂ (3d)		34%	12%	15%	
7	RhCl ₃ · xH ₂ O (3a)	PPh ₃ (5 mol%)	69%	72%	71%	
8	RhCl ₃ xH ₂ O (3a)		42%	39%	32%	

^aThe polystyrene-based rhodium catalyst generated *in-situ* from 3 and 4 was reused, and 5 and PPh₃ removed by decanting and washing operation were readded on each run.

that the in situ generated polymer-supported catalyst is fairly stable. Additional PPh₃ is important for the catalytic activity in this reaction since exclusive polystyrene-based diphenylphosphine rhodium catalyst may not undergo facile reductive elimination due to the difficult dissociation—coordination process of polymer-bound phosphine around the metal center.

In conclusion, polymer-supported rhodium complexes, generated in situ by ligand-exchange reaction, were utilized for the direct synthesis of benzyl alcohol to ketone. The catalytic activity of the recovered catalyst did not decrease after several uses.

Acknowledgements

This research was supported by the Korea Science and Engineering Foundation (Grant No. 97-05-01-3) and the Ministry of Education (BSRI-97-3422).

References

- 1. (a) Kondo, T.; Akazome, M.; Tsuji, Y.; Watanabe, Y. J. Org. Chem. 1990, 55, 1286-1291. (b) Mader, T. B.; Roe, D. C.; Milstein, D. Organometallics 1988, 7, 1451-1453.
- 2. (a) Jun, C.-H.; Lee, H.; Hong, J.-B. J. Org. Chem. 1997, 62, 1200-1201. (b) Jun, C.-H.; Lee, D.-Y.; Hong, J.-B. Tetrahedron Lett. 1997, 38, 6673-6676.
- 3. (a) Jun, C.-H.; Huh, C.-W.; Na, S.-J. Angew. Chem., Int. Ed. Engl. 1988, 37, 145-147. (b) Jun, C.-H.; Hwang, D.-C. Polymer 1998, 39, 7143-7147.
- 4. For review, see: Cornils, B.; Herrmann, W. A. In Applied Homogeneous Catalysis with Organometallic Compounds; Cornils, B.; Herrmann, W. A., Eds.; VCH: New York, 1996; Vol. 2, pp. 575-601.
- For review, see: (a) Bailey, D. C.; Langer, S. H. Chem. Rev. 1981, 81, 109-148. (b) Akelah, A.; Sherrington, D. C. Chem. Rev. 1981, 81, 557-587. (c) Hartley, F. R. In Supported Metal Complexes; D. Reidel Publishing Co.: Dordrecht, 1985. (c) Frechet, J. M. Tetrahedron 1981, 37, 663-683.
- 6. Experimental procedure: A mixture of 17.6 mg 4 (purchased from Aldrich Chemical Co., polystyrene cross-linked with 2% DVB, 3 mmol P/g resin), 3.8 mg 3a, 38.9 mg 5, 4.7 mg PPh₃, 303 mg 2a, and 38.9 mg 1a was dissolved in 100

mg toluene in a screw-capped vial, and stirred at 130°C for 72 h. After the reaction, the solution was decanted and washed with benzene six times. The solvent evaporated and the resulting adduct was purified by column-chromatography (hexane:ethylacetate=5:2) to give 47.2 mg 6a (69%) and 1.8 mg PPh₃. To the solid phase remaining in the vial, 38.9 mg 1a, 38.9 mg 5, PPh₃ (1.8 mg: amount of the removed PPh₃ on decanting and washing at the first run) and 303 mg 2a were added. The reaction was carried out under the previous reaction conditions to give 49.2 mg 6a (72%).

- 7. When the reaction was carried out with benzaldehyde instead of 1a, no reaction occurred.
- 8. Osborn, J. A.; Wilkinson, G. In Reagents for Transition Metal Complex and Organometallic Syntheses; Angelici, R., Ed.; Wiley: New York, 1989; Vol. 28, pp. 77-79.